If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+8n+4=0
a = 1; b = 8; c = +4;
Δ = b2-4ac
Δ = 82-4·1·4
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{3}}{2*1}=\frac{-8-4\sqrt{3}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{3}}{2*1}=\frac{-8+4\sqrt{3}}{2} $
| x=(x+15)/4 | | 2x-15=-5x+27 | | 45(w−1)−215=−5 | | 3x+8=2x2 | | -m/3+1=-8 | | -4x+27=2x-15 | | -2.4=-x+9.6 | | 180=35+(-5-8x)+(-2x) | | a10-1=3 | | a/3+24=8 | | 5v/8-7=-22 | | 24=2x/3+12 | | -4x+4=-13 | | 2b+13=2 | | 4/40=c/100 | | 5(g-73)=90 | | 8b+18=40 | | 4(5k+7)=(-2)(-4)k | | -10+x=40 | | 3x2+5x=-7x+28 | | 1x+41+70+90=90 | | 1x+411+70+90=180 | | 12(h-955)=468 | | 14x+2x+5= | | 1x+41+70+90=180 | | 16(g+18)=624 | | 0=2y-7 | | 13=5x=33 | | 64=100-9d | | 8(8x+6x)=7(16) | | 7-11=0.2x | | 111-6g=21 |